Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes.

نویسندگان

  • Elisabeth Wutscher
  • Franz J Giessibl
چکیده

We report on atomic force microscopy (AFM) in ambient and liquid environments with the qPlus sensor, a force sensor based on a quartz tuning fork with an all-electrical deflection measurement scheme. Small amplitudes, stiff sensors with bulk diamond tips and high Q values in air and liquid allow to obtain high resolution images. The noise sources in air and liquid are analyzed and compared for standard silicon cantilevers and qPlus sensors. First, epitaxial graphene was imaged in air, showing atomic steps with 3 Å height and ridges. As a second sample system, measurements on calcite (CaCO(3)) in liquids were performed in water and polyethylenglycol (PEG). We demonstrate high resolution images of steps in PEG on calcite and nanolithography processes, in particular with frequency-modulation AFM the controlled dissolution of calcite monolayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface circuits for quartz crystal sensors in scanning probe microscopy applications

Complementary to industrial cantilever based force sensors in scanning probe microscopy SPM , symmetrical quartz crystal resonators QCRs , e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high perfo...

متن کامل

Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor

In frequency modulation atomic force microscopy, the stiffness, quality factor and oscillation amplitude of the cantilever are important parameters. While the first atomic resolution results were obtained with amplitudes of a few hundred ångstrom, it has subsequently been shown that smaller amplitudes should result in a better signal-to-noise ratio and an increased sensitivity to the short-rang...

متن کامل

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high r...

متن کامل

Optimizing atomic resolution of force microscopy in ambient conditions

Ambient operation poses a challenge to atomic force microscopy because in contrast to operation in vacuum or liquid environments, the cantilever dynamics change dramatically from oscillating in air to oscillating in a hydration layer when probing the sample. We demonstrate atomic resolution by imaging of the KBr(001) surface in ambient conditions by frequency-modulation atomic force microscopy ...

متن کامل

Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 82 9  شماره 

صفحات  -

تاریخ انتشار 2011